Class XI Chapter 1 – Sets Maths
Page 1 of 44
Exercise 1.1
Question 1:
Which of the following are sets? Justify our answer.
(i) The collection of all months of a year beginning with the letter J.
(ii) The collection of ten most talented writers of India.
(iii) A team of eleven best-cricket batsmen of the world.
(iv) The collection of all boys in your class.
(v) The collection of all natural numbers less than 100.
(vi) A collection of novels written by the writer Munshi Prem Chand.
(vii) The collection of all even integers.
(viii) The collection of questions in this Chapter.
(ix) A collection of most dangerous animals of the world.
Answer
(i) The collection of all months of a year beginning with the letter J is a well-defined
collection of objects because one can definitely identify a month that belongs to this
collection.
Hence, this collection is a set.
(ii) The collection of ten most talented writers of India is not a well-defined collection
because the criteria for determining a writer’s talent may vary from person to person.
Hence, this collection is not a set.
(iii) A team of eleven best cricket batsmen of the world is not a well-defined collection
because the criteria for determining a batsman’s talent may vary from person to person.
Hence, this collection is not a set.
(iv) The collection of all boys in your class is a well-defined collection because you can
definitely identify a boy who belongs to this collection.
Hence, this collection is a set.
(v) The collection of all natural numbers less than 100 is a well-defined collection
because one can definitely identify a number that belongs to this collection.
Hence, this collection is a set.
(vi) A collection of novels written by the writer Munshi Prem Chand is a well-defined
collection because one can definitely identify a book that belongs to this collection.
Class XI Chapter 1 –Sets Maths
Page 2 of 44
Hence, this collection is a set.
(vii) The collection of all even integers is a well-defined collection because one can
definitely identify an even integer that belongs to this collection.
Hence, this collection is a set.
(viii) The collection of questions in this chapter is a well-defined collection because one
can definitely identify a question that belongs to this chapter.
Hence, this collection is a set.
(ix) The collection of most dangerous animals of the world is not a well-defined
collection because the criteria for determining the dangerousness of an animal can vary
from person to person.
Hence, this collection is not a set.
Question 2:
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈or ∉in the blank spaces:
(i) 5…A (ii) 8…A (iii) 0…A
(iv) 4…A (v) 2…A (vi) 10…A
Answer
(i) 5 ∈ A
(ii) 8 ∉A
(iii) 0 ∉A
(iv) 4 ∈ A
(v) 2 ∈ A
(vi) 10 ∉A
Question 3:
Write the following sets in roster form:
(i) A = {x: x is an integer and – < x < 7}.
(ii) B = {x: x is a natural number less than 6}.
(iii) C = {x: x is a two-digit natural number such that the sum of its digits is 8}
(iv) D = {x: x is a prime number which is divisor of 60}.
(v) E = The set of all letters in the word TRIGONOMETRY.
(vi) F = The set of all letters in the word BETTER.
Class XI Chapter 1 –Sets Maths
Page 3 of 44
Answer
(i) A = {x: x is an integer and – < x < 7}
The elements of this set are –, –, 0, 1, 2, 3, 4, 5, and 6 only.
Therefore, the given set can be written in roster form as
A = {–, –, 0, 1, 2, 3, 4, 5, 6}
(ii) B = {x: x is a natural number less than 6}
The elements of this set are 1, 2, 3, 4, and 5 only.
Therefore, the given set can be written in roster form as
B = {1, 2, 3, 4, 5}
(iii) C = {x: x is a two-digit natural number such that the sum of its digits is 8}
The elements of this set are 17, 26, 35, 44, 53, 62, 71, and 80 only.
Therefore, this set can be written in roster form as
C = {17, 26, 35, 44, 53, 62, 71, 80}
(iv) D = {x: x is a prime number which is a divisor of 60}
2 60
2 30
3 15
5
∴60 = 2 × 2 × 3 × 5
The elements of this set are 2, 3, and 5 only.
Therefore, this set can be written in roster form as D = {2, 3, 5}.
(v) E = The set of all letters in the word TRIGONOMETRY
There are 12 letters in the word TRIGONOMETRY, out of which letters T, R, and O are
repeated.
Therefore, this set can be written in roster form as
E = {T, R, I, G, O, N, M, E, Y}
(vi) F = The set of all letters in the word BETTER
There are 6 letters in the word BETTER, out of which letters E and T are repeated.
Therefore, this set can be written in roster form as
Class XI Chapter 1 –Sets Maths
Page 4 of 44
F = {B, E, T, R}
Question 4:
Write the following sets in the set-builder form:
(i) (3, 6, 9, 12) (ii) {2, 4, 8, 16, 32}
(iii) {5, 25, 125, 625} (iv) {2, 4, 6 …}
(v) {1, 4, 9 … 100}
Answer
(i) {3, 6, 9, 12} = {x: x = 3n, n∈ N and 1 ≤n ≤4}
(ii) {2, 4, 8, 16, 32}
It can be seen that 2 = 21, 4 = 22, 8 = 23, 16 = 24, and 32 = 25.
∴ {2, 4, 8, 16, 32} = {x: x = 2n, n∈ N and 1 ≤n ≤5}
(iii) {5, 25, 125, 625}
It can be seen that 5 = 51, 25 = 52, 125 = 53, and 625 = 54.
∴ {5, 25, 125, 625} = {x: x = 5n, n∈N and 1 ≤n ≤4}
(iv) {2, 4, 6 …}
It is a set of all even natural numbers.
∴ {2, 4, 6 …} = {x: x is an even natural number}
(v) {1, 4, 9 … 100}
It can be seen that 1 = 12, 4 = 22, 9 = 32 …100 = 102.
∴ {1, 4, 9… 100} = {x: x = n2, n∈N and 1 ≤n ≤10}
Question 5:
List all the elements of the following sets:
(i) A = {x: x is an odd natural number}
(ii) B = {x: x is an integer, }
(iii) C = {x: x is an integer, }
(iv) D = {x: x is a letter in the word “LOYAL”}
(v) E = {x: x is a month of a year not having 31 days}
Class XI Chapter 1 –Sets Maths
Page 5 of 44
(vi) F = {x: x is a consonant in the English alphabet which proceeds k}.
Answer
(i) A = {x: x is an odd natural number} = {1, 3, 5, 7, 9 …}
(ii) B = {x: x is an integer; }
It can be seen that and
∴ B
(iii) C = {x: x is an integer; }
It can be seen that
(–)2 = 1 ≤4; (–)2 = 4 ≤4; (–)2 = 9 > 4
02 = 0 ≤4
12 = 1 ≤4
22 = 4 ≤4
32 = 9 > 4
∴C = {–, –, 0, 1, 2}
(iv) D = (x: x is a letter in the word “LOYAL”) = {L, O, Y, A}
(v) E = {x: x is a month of a year not having 31 days}
= {February, April, June, September, November}
(vi) F = {x: x is a consonant in the English alphabet which precedes k}
= {b, c, d, f, g, h, j}
Question 6:
Match each of the set on the left in the roster form with the same set on the right
described in set-builder form:
(i) {1, 2, 3, 6} (a) {x: x is a prime number and a divisor of 6}
(ii) {2, 3} (b) {x: x is an odd natural number less than 10}
(iii) {M, A,T, H, E, I,C, S} (c) {x: x is natural number and divisor of 6}
(iv) {1, 3, 5, 7, 9} (d) {x: x is a letter of the word MATHEMATICS}
Answer
Class XI Chapter 1 –Sets Maths
Page 6 of 44
(i) All the elements of this set are natural numbers as well as the divisors of 6.
Therefore, (i) matches with (c).
(ii) It can be seen that 2 and 3 are prime numbers. They are also the divisors of 6.
Therefore, (ii) matches with (a).
(iii) All the elements of this set are letters of the word MATHEMATICS. Therefore, (iii)
matches with (d).
(iv) All the elements of this set are odd natural numbers less than 10. Therefore, (iv)
matches with (b).
Class XI Chapter 1 –Sets Maths
Page 7 of 44
Exercise 1.2
Question 1:
Which of the following are examples of the null set
(i) Set of odd natural numbers divisible by 2
(ii) Set of even prime numbers
(iii) {x:x is a natural numbers, x < 5 and x > 7 }
(iv) {y:y is a point common to any two parallel lines}
Answer
(i) A set of odd natural numbers divisible by 2 is a null set because no odd number is
divisible by 2.
(ii) A set of even prime numbers is not a null set because 2 is an even prime number.
(iii) {x: x is a natural number, x < 5 and x > 7} is a null set because a number cannot
be simultaneously less than 5 and greater than 7.
(iv) {y: y is a point common to any two parallel lines} is a null set because parallel lines
do not intersect. Hence, they have no common point.
Question 2:
Which of the following sets are finite or infinite
(i) The set of months of a year
(ii) {1, 2, 3 ...}
(iii) {1, 2, 3 ... 99, 100}
(iv) The set of positive integers greater than 100
(v) The set of prime numbers less than 99
Answer
Class XI Chapter 1 –Sets Maths
Page 8 of 44
(i) The set of months of a year is a finite set because it has 12 elements.
(ii) {1, 2, 3 …} is an infinite set as it has infinite number of natural numbers.
(iii) {1, 2, 3 …99, 100} is a finite set because the numbers from 1 to 100 are finite in
number.
(iv) The set of positive integers greater than 100 is an infinite set because positive
integers greater than 100 are infinite in number.
(v) The set of prime numbers less than 99 is a finite set because prime numbers less
than 99 are finite in number.
Question 3:
State whether each of the following set is finite or infinite:
(i) The set of lines which are parallel to the x-axis
(ii) The set of letters in the English alphabet
(iii) The set of numbers which are multiple of 5
(iv) The set of animals living on the earth
(v) The set of circles passing through the origin (0, 0)
Answer
(i) The set of lines which are parallel to the x-axis is an infinite set because lines
parallel to the x-axis are infinite in number.
(ii) The set of letters in the English alphabet is a finite set because it has 26 elements.
(iii) The set of numbers which are multiple of 5 is an infinite set because multiples of 5
are infinite in number.
(iv) The set of animals living on the earth is a finite set because the number of animals
living on the earth is finite (although it is quite a big number).
(v) The set of circles passing through the origin (0, 0) is an infinite set because infinite
number of circles can pass through the origin.
Question 4:
In the following, state whether A = B or not:
(i) A = {a, b, c, d}; B = {d, c, b, a}
(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18}
(iii) A = {2, 4, 6, 8, 10}; B = {x: x is positive even integer and x ≤10}
Class XI Chapter 1 –Sets Maths
Page 9 of 44
(iv) A = {x: x is a multiple of 10}; B = {10, 15, 20, 25, 30 ...}
Answer
(i) A = {a, b, c, d}; B = {d, c, b, a}
The order in which the elements of a set are listed is not significant.
∴A = B
(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18}
It can be seen that 12 ∈ A but 12 ∉B.
∴A ≠ B
(iii) A = {2, 4, 6, 8, 10}
B = {x: x is a positive even integer and x ≤10}
= {2, 4, 6, 8, 10}
∴A = B
(iv) A = {x: x is a multiple of 10}
B = {10, 15, 20, 25, 30 …}
It can be seen that 15 ∈ B but 15 ∉A.
∴A ≠ B
Question 5:
Are the following pair of sets equal? Give reasons.
(i) A = {2, 3}; B = {x: x is solution of x2 + 5x + 6 = 0}
(ii) A = {x: x is a letter in the word FOLLOW}; B = {y: y is a letter in the word WOLF}
Answer
(i) A = {2, 3}; B = {x: x is a solution of x2 + 5x + 6 = 0}
The equation x2 + 5x + 6 = 0 can be solved as:
x(x + 3) + 2(x + 3) = 0
(x + 2)(x + 3) = 0
x = – or x = –
∴A = {2, 3}; B = {–, –}
∴A ≠ B
(ii) A = {x: x is a letter in the word FOLLOW} = {F, O, L, W}
B = {y: y is a letter in the word WOLF} = {W, O, L, F}
Class XI Chapter 1 –Sets Maths
Page 10 of 44
The order in which the elements of a set are listed is not significant.
∴A = B
Question 6:
From the sets given below, select equal sets:
A = {2, 4, 8, 12}, B = {1, 2, 3, 4}, C = {4, 8, 12, 14}, D = {3, 1, 4, 2}
E = {–, 1}, F = {0, a}, G = {1, –}, H = {0, 1}
Answer
A = {2, 4, 8, 12}; B = {1, 2, 3, 4}; C = {4, 8, 12, 14}
D = {3, 1, 4, 2}; E = {–, 1}; F = {0, a}
G = {1, –}; A = {0, 1}
It can be seen that
8 ∈ A, 8 ∉B, 8 ∉D, 8 ∉E, 8 ∉F, 8 ∉G, 8 ∉H
⇒ A ≠ B, A ≠ D, A ≠ E, A ≠ F, A ≠ G, A ≠ H
Also, 2 ∈ A, 2 ∉C
∴ A ≠ C
3 ∈ B, 3 ∉C, 3 ∉E, 3 ∉F, 3 ∉G, 3 ∉H
∴ B ≠ C, B ≠ E, B ≠ F, B ≠ G, B ≠ H
12 ∈ C, 12 ∉D, 12 ∉E, 12 ∉F, 12 ∉G, 12 ∉H
∴ C ≠ D, C ≠ E, C ≠ F, C ≠ G, C ≠ H
4 ∈ D, 4 ∉E, 4 ∉F, 4 ∉G, 4 ∉H
∴ D ≠ E, D ≠ F, D ≠ G, D ≠ H
Similarly, E ≠ F, E ≠ G, E ≠ H
F ≠ G, F ≠ H, G ≠ H
The order in which the elements of a set are listed is not significant.
∴ B = D and E = G
Hence, among the given sets, B = D and E = G.
Class XI Chapter 1 –Sets Maths
Page 11 of 44
Exercise 1.3
Question 1:
Make correct statements by filling in the symbols ⊂ or ⊄in the blank spaces:
(i) {2, 3, 4} … {1, 2, 3, 4, 5}
(ii) {a, b, c} … {b, c, d}
(iii) {x: x is a student of Class XI of your school} … {x: x student of your school}
(iv) {x: x is a circle in the plane} … {x: x is a circle in the same plane with radius 1
unit}
(v) {x: x is a triangle in a plane}…{x: x is a rectangle in the plane}
(vi) {x: x is an equilateral triangle in a plane}… {x: x is a triangle in the same plane}
(vii) {x: x is an even natural number} … {x: x is an integer}
Answer
(i)
(ii)
(iii) {x: x is a student of class XI of your school}⊂ {x: x is student of your school}
(iv) {x: x is a circle in the plane} ⊄{x: x is a circle in the same plane with radius 1
unit}
(v) {x: x is a triangle in a plane} ⊄{x: x is a rectangle in the plane}
(vi) {x: x is an equilateral triangle in a plane}⊂ {x: x in a triangle in the same plane}
Class XI Chapter 1 –Sets Maths
Page 12 of 44
(vii) {x: x is an even natural number} ⊂ {x: x is an integer}
Question 2:
Examine whether the following statements are true or false:
(i) {a, b} ⊄{b, c, a}
(ii) {a, e} ⊂ {x: x is a vowel in the English alphabet}
(iii) {1, 2, 3} ⊂{1, 3, 5}
(iv) {a} ⊂ {a. b, c}
(v) {a} ∈ (a, b, c)
(vi) {x: x is an even natural number less than 6} ⊂ {x: x is a natural number which
divides 36}
Answer
(i) False. Each element of {a, b} is also an element of {b, c, a}.
(ii) True. a, e are two vowels of the English alphabet.
(iii) False. 2∈{1, 2, 3}; however, 2∉{1, 3, 5}
(iv) True. Each element of {a} is also an element of {a, b, c}.
(v) False. The elements of {a, b, c} are a, b, c. Therefore, {a}⊂{a, b, c}
(vi) True. {x:x is an even natural number less than 6} = {2, 4}
{x:x is a natural number which divides 36}= {1, 2, 3, 4, 6, 9, 12, 18, 36}
Question 3:
Let A= {1, 2, {3, 4,}, 5}. Which of the following statements are incorrect and why?
(i) {3, 4}⊂ A
(ii) {3, 4}}∈ A
(iii) {{3, 4}}⊂ A
(iv) 1∈ A
(v) 1⊂ A
(vi) {1, 2, 5} ⊂ A
(vii) {1, 2, 5} ∈ A
(viii) {1, 2, 3} ⊂ A
(ix) Φ ∈ A
(x) Φ ⊂ A
Class XI Chapter 1 –Sets Maths
Page 13 of 44
(xi) {Φ} ⊂ A
Answer
A = {1, 2, {3, 4}, 5}
(i) The statement {3, 4} ⊂ A is incorrect because 3 ∈ {3, 4}; however, 3∉A.
(ii) The statement {3, 4} ∈A is correct because {3, 4} is an element of A.
(iii) The statement {{3, 4}} ⊂ A is correct because {3, 4} ∈ {{3, 4}} and {3, 4} ∈ A.
(iv) The statement 1∈A is correct because 1 is an element of A.
(v) The statement 1⊂ A is incorrect because an element of a set can never be a subset
of itself.
(vi) The statement {1, 2, 5} ⊂ A is correct because each element of {1, 2, 5} is also an
element of A.
(vii) The statement {1, 2, 5} ∈ A is incorrect because {1, 2, 5} is not an element of A.
(viii) The statement {1, 2, 3} ⊂ A is incorrect because 3 ∈ {1, 2, 3}; however, 3 ∉A.
(ix) The statement Φ ∈ A is incorrect because Φ is not an element of A.
(x) The statement Φ ⊂ A is correct because Φ is a subset of every set.
(xi) The statement {Φ} ⊂ A is incorrect because Φ∈ {Φ}; however, Φ ∈ A.
Question 4:
Write down all the subsets of the following sets:
(i) {a}
(ii) {a, b}
(iii) {1, 2, 3}
(iv) Φ
Answer
(i) The subsets of {a} are Φ and {a}.
(ii) The subsets of {a, b} areΦ, {a}, {b}, and {a, b}.
(iii) The subsets of {1, 2, 3} areΦ, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, and
{1, 2, 3}
(iv) The only subset of Φ isΦ.
Question 5:
How many elements has P(A), if A = Φ?
Class XI Chapter 1 –Sets Maths
Page 14 of 44
Answer
We know that if A is a set with m elements i.e., n(A) = m, then n[P(A)] = 2m.
If A = Φ, then n(A) = 0.
∴ n[P(A)] = 20 = 1
Hence, P(A) has one element.
Question 6:
Write the following as intervals:
(i) {x: x ∈ R, – < x ≤6}
(ii) {x: x ∈ R, –2 < x < –0}
(iii) {x: x ∈ R, 0 ≤x < 7}
(iv) {x: x ∈ R, 3 ≤x ≤4}
Answer
(i) {x: x ∈ R, – < x ≤6} = (–, 6]
(ii) {x: x ∈ R, –2 < x < –0} = (–2, –0)
(iii) {x: x ∈ R, 0 ≤x < 7} = [0, 7)
(iv) {x: x ∈ R, 3 ≤x ≤4} = [3, 4]
Question 7:
Write the following intervals in set-builder form:
(i) (–, 0)
(ii) [6, 12]
(iii) (6, 12]
(iv) [–3, 5)
Answer
(i) (–, 0) = {x: x ∈ R, – < x < 0}
(ii) [6, 12] = {x: x ∈ R, 6 ≤x ≤12}
(iii) (6, 12] ={x: x ∈ R, 6 < x ≤12}
(iv) [–3, 5) = {x: x ∈ R, –3 ≤x < 5}
Question 8:
What universal set (s) would you propose for each of the following:
Class XI Chapter 1 –Sets Maths
Page 15 of 44
(i) The set of right triangles
(ii) The set of isosceles triangles
Answer
(i) For the set of right triangles, the universal set can be the set of triangles or the set
of polygons.
(ii) For the set of isosceles triangles, the universal set can be the set of triangles or the
set of polygons or the set of two-dimensional figures.
Question 9:
Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, which of the
following may be considered as universals set (s) for all the three sets A, B and C
(i) {0, 1, 2, 3, 4, 5, 6}
(ii) Φ
(iii) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(iv) {1, 2, 3, 4, 5, 6, 7, 8}
Answer
(i) It can be seen that A ⊂ {0, 1, 2, 3, 4, 5, 6}
B ⊂ {0, 1, 2, 3, 4, 5, 6}
However, C ⊄{0, 1, 2, 3, 4, 5, 6}
Therefore, the set {0, 1, 2, 3, 4, 5, 6} cannot be the universal set for the sets A, B, and
C.
(ii) A ⊄Φ, B ⊄Φ, C ⊄Φ
Therefore, Φ cannot be the universal set for the sets A, B, and C.
(iii) A ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
B ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
C ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Therefore, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the universal set for the sets A, B,
and C.
(iv) A ⊂ {1, 2, 3, 4, 5, 6, 7, 8}
B ⊂ {1, 2, 3, 4, 5, 6, 7, 8}
However, C ⊄{1, 2, 3, 4, 5, 6, 7, 8}
Class XI Chapter 1 –Sets Maths
Page 16 of 44
Therefore, the set {1, 2, 3, 4, 5, 6, 7, 8} cannot be the universal set for the sets A, B,
and C.
Exercise 1.4
Question 1:
Find the union of each of the following pairs of sets:
(i) X = {1, 3, 5} Y = {1, 2, 3}
(ii) A = {a, e, i, o, u} B = {a, b, c}
(iii) A = {x: x is a natural number and multiple of 3}
B = {x: x is a natural number less than 6}
(iv) A = {x: x is a natural number and 1 < x ≤6}
B = {x: x is a natural number and 6 < x < 10}
(v) A = {1, 2, 3}, B = Φ
Answer
(i) X = {1, 3, 5} Y = {1, 2, 3}
X∪ Y= {1, 2, 3, 5}
(ii) A = {a, e, i, o, u} B = {a, b, c}
Class XI Chapter 1 –Sets Maths
Page 17 of 44
A∪ B = {a, b, c, e, i, o, u}
(iii) A = {x: x is a natural number and multiple of 3} = {3, 6, 9 …}
As B = {x: x is a natural number less than 6} = {1, 2, 3, 4, 5, 6}
A ∪ B = {1, 2, 4, 5, 3, 6, 9, 12 …}
∴ A ∪ B = {x: x = 1, 2, 4, 5 or a multiple of 3}
(iv) A = {x: x is a natural number and 1 < x ≤6} = {2, 3, 4, 5, 6}
B = {x: x is a natural number and 6 < x < 10} = {7, 8, 9}
A∪ B = {2, 3, 4, 5, 6, 7, 8, 9}
∴ A∪ B = {x: x ∈ N and 1 < x < 10}
(v) A = {1, 2, 3}, B = Φ
A∪ B = {1, 2, 3}
Question 2:
Let A = {a, b}, B = {a, b, c}. Is A ⊂ B? What is A ∪ B?
Answer
Here, A = {a, b} and B = {a, b, c}
Yes, A ⊂ B.
A∪ B = {a, b, c} = B
Question 3:
If A and B are two sets such that A ⊂ B, then what is A ∪ B?
Answer
If A and B are two sets such that A ⊂ B, then A ∪ B = B.
Question 4:
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
(i) A ∪ B
(ii) A ∪ C
(iii) B ∪ C
(iv) B ∪ D
(v) A ∪ B ∪ C
(vi) A ∪ B ∪ D
Class XI Chapter 1 –Sets Maths
Page 18 of 44
(vii) B ∪ C ∪ D
Answer
A = {1, 2, 3, 4], B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}
(i) A ∪ B = {1, 2, 3, 4, 5, 6}
(ii) A ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}
(iii) B ∪ C = {3, 4, 5, 6, 7, 8}
(iv) B ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}
(v) A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}
(vi) A ∪ B ∪ D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(vii) B ∪ C ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}
Question 5:
Find the intersection of each pair of sets:
(i) X = {1, 3, 5} Y = {1, 2, 3}
(ii) A = {a, e, i, o, u} B = {a, b, c}
(iii) A = {x: x is a natural number and multiple of 3}
B = {x: x is a natural number less than 6}
(iv) A = {x: x is a natural number and 1 < x ≤6}
B = {x: x is a natural number and 6 < x < 10}
(v) A = {1, 2, 3}, B = Φ
Answer
(i) X = {1, 3, 5}, Y = {1, 2, 3}
X ∩ Y = {1, 3}
(ii) A = {a, e, i, o, u}, B = {a, b, c}
A ∩
No comments:
Post a Comment